Rota–baxter Algebras, Singular Hypersurfaces, and Renormalization on Kausz Compactifications
نویسنده
چکیده
We consider Rota-Baxter algebras of meromorphic forms with poles along a (singular) hypersurface in a smooth projective variety and the associated Birkhoff factorization for algebra homomorphisms from a commutative Hopf algebra. In the case of a normal crossings divisor, the Rota-Baxter structure simplifies considerably and the factorization becomes a simple pole subtraction. We apply this formalism to the unrenormalized momentum space Feynman amplitudes, viewed as (divergent) integrals in the complement of the determinant hypersurface. We lift the integral to the Kausz compactification of the general linear group, whose boundary divisor is normal crossings. We show that the Kausz compactification is a Tate motive and the boundary divisor is a mixed Tate configuration. The regularization of the integrals that we obtain differs from the usual renormalization of physical Feynman amplitudes, and in particular it always gives mixed Tate periods.
منابع مشابه
Rota–baxter Algebras in Renormalization of Perturbative Quantum Field Theory
Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota–Baxter algebras enters the scene. In this note we revi...
متن کاملFree Rota – Baxter Algebras and Rooted Trees
A Rota–Baxter algebra, also known as a Baxter algebra, is an algebra with a linear operator satisfying a relation, called the Rota–Baxter relation, that generalizes the integration by parts formula. Most of the studies on Rota–Baxter algebras have been for commutative algebras. Two constructions of free commutative Rota–Baxter algebras were obtained by Rota and Cartier in the 1970s and a third ...
متن کاملar X iv : m at h / 05 10 26 6 v 3 [ m at h . R A ] 2 1 Fe b 20 06 ON FREE ROTA – BAXTER ALGEBRAS
A Rota–Baxter algebra, also known as a Baxter algebra, is an algebra with a linear operator satisfying a relation, called the Rota–Baxter relation, that generalizes the integration by parts formula. Most of the studies on Rota–Baxter algebras have been for commutative algebras. Free commutative Rota–Baxter algebras were constructed by Rota and Cartier in the 1970s. A later construction was obta...
متن کاملA Noncommutative Bohnenblust–spitzer Identity for Rota–baxter Algebras Solves Bogoliubov’s Recursion
The Bogoliubov recursion is a particular procedure appearing in the process of renormalization in perturbative quantum field theory. It provides convergent expressions for otherwise divergent integrals. We develop here a theory of functional identities for noncommutative Rota–Baxter algebras which is shown to encode, among others, this process in the context of Connes–Kreimer’s Hopf algebra of ...
متن کامل. R A ] 1 3 O ct 2 00 5 ON FREE ROTA – BAXTER ALGEBRAS
Most of the studies on Rota–Baxter algebras (also known as Baxter algebras) have been for commutative algebras. Free commutative Rota–Baxter algebras were constructed by Rota and Cartier in the 1970s. A later construction was obtained by Keigher and one of the authors in terms of mixable shuffles. Recently, noncommutative Rota–Baxter algebras have appeared both in physics in connection with the...
متن کامل